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COMMENT 

On path integrals in spherical coordinates 
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$ Physics Department, Dicle University, Diyarbakir, Turkey 
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Abstract. An alternative derivation of the path integrals in spherical coordinates is presented 
for the purpose of discussing the nature of the quantum mechanical terms appearing in 
the action. It is shown that the Jacobian resulting from the transformation of the functional 
measure from Cartesian coordinates changes the action by surface terms which then lead 
to the correct ordering contributions. 

In Cartesian coordinates the path integrals are formulated in terms of the classical 
action. However, it is a well known fact that, when one makes point canonical 
transformations or employs curvilinear coordinates, the action acquires some purely 
quantum mechanical terms, namely the ordering contributions. Hoping to achieve a 
better understanding of the nature of these terms, we present a new method for deriving 
the Hamiltonian path integral in spherical coordinates. Originally, the path integrals 
in polar coordinates were obtained by expressing the short time interval Green functions 
in terms of the polar coordinates by using some expansion recipies [l, 21. The basic 
feature of the method introduced in this comment is that it demonstrates that the 
transformation of the functional measure from the Cartesian coordinates adds surface 
terms to the action which then give rise to the correct ordering contributions. We 
expect that our procedure will also be applicable to problems that may arise in 
calculating the effective Hamiltonian resulting from the point transformations. In fact, 
similar techniques have already been employed succesfully in solving the path integrals 
for the Morse, the Wood-Saxon and some related potentials [3,4]. 

We start with the phase space path integral for a particle m moving under the 
influence of a central potential V (  r )  from the spacetime point r,, t ,  = 0 to rb, f b  = 7 in 
Cartesian coordinates 

As usual this expression is understood as the limit of the time-graded formula: 

n + l  d3p, K ( r a ,  rb ;  T )  = lim 1 fi d3r, n - 
n-m ,=1 (2.n)3 
E - 0  
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with 

( n  + 1 ) ~  = T r = ra ; r,,, = rb. 

We pass to the spherical coordinates in two steps: First, we introduce the polar 
coordinates p E (0, CO) and Q E ( 0 , 2 ~ )  in the xy plane 

Px = Pp cos Q -- Pu 
sin Q 

P 
X = p COS Q 

cos Q 
P 

y = p sin Q pY=p,sincp+-pu. (3) 

Since there is no integration over the coordinate variables at point rb in (2),  we get a 
contribution pa’ to the Jacobian for (dp, dp,),+, + (dp, dpa)n+l .  Then (6) becomes 

K(ra9 rb; T ,  = p i 1  ~ ( P Y  PI z)9(Pp, PQP, Pz) I 
xexp{i 2m (4) 

To have a manifestly symmetric expression for the propagator with respect to points 
ra and rb, we rewrite the factor pa’ as 

pal = (paPb)-1’2 exp[ln(pb/pa)-”21 

= (papb)-’/’ exp(i [: dl:). 

Introducing this formula into (4) and then translating pp by pp + pp - i/2p are obtain: 

K(ra9 rb ; 7 )  = (PaPb)-1’2 [ ’ ( P ,  9 9  z)9(pp, PQP, PZ) 

xexp{i 2m V ( r ) ] } .  

( 6 )  

Note that we could discretise the path integral equally well by starting the time division 
of the momentum variable a t j  = 0 and ending at j = n. Then we would get a contribution 
pa to the Jacobian for the (dpxdp,)o + (dp,dp,),, transformation. Symmetrisation of 
this factor as 

- 1  

would lead to the same equation as (6) with the sign of the imaginary term in the 
action reversed. However, the existence of such a term means a shift in the velocity b, 

- pj- 1 PJ - PJ- 1 * iE/2mpJ 
which disappears in the E + 0 limit. The Green function of (6) then can be written as 

K(ra, rb; = (PaPb)-’” 

xexp{i 2m - V ( r ) ] } .  (7) 
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At this stage we would like to point out that, to perform the symmetrisation of the 
Jacobian in a rigorous way, we could first make an analytical continuation by t + i f  
and r + i r  in (1). This would save us from having an imaginary term in the action. 

To complete the transformation to the spherical coordinates we now pass from p, 
z to r E (0, a) and 8 E (0, 7) defined by 

p = r sin 0 z = r COS e. 
Introducing these coordinates into ( 7 )  and symmetrising the resulting Jacobian rh’  (or 
r p l )  in exactly the same fashion as before, we arrive at the correct form of the 
Hamiltonian path integral in spherical coordinates [ 2 ] :  

At this point, for comparison, we briefly mention previous derivations of the above 
formula. For example in [ 2 ]  this is achieved by expanding the configuration-space 
form of the short time interval amplitudes in terms of the Bessel functions. For that 
purpose the Lagrangian in the j th  interval is written as 

m 
2 E 2  I 

L,=-(r -r,-l)2- V ( r , )  

m mrjrj-l 
cos(ej - e,-l) -- - ( r j - r j - l ) - -  

2 E 2  E’ 

mr,r,-1 m 
-- sin e, sin e,-] cos(ql - P , - ~ ) + -  E 2  r r  J I - 1  sin e, sin e,-, - V(r , ) .  

E 2  
(9) 

Then the asymptotic form of the expansion formula for E + 0 
X 

exp(z cos 6 )  = exp(iv6)Iv(z) (10) 
Y = - X  

is separately employed for the second and third terms of (9) .  These two separate 
expansions correspona to the two steps of our symmetrisation procedure. 

In conclusion, the Jacobian resulting from the non-invariance of the path integral 
measure under coordinate transformations is the source of the ordering contributions 
in the action. This Jacobian depends only on the endpoint coordinates, and thus 
changes the action by surface terms. In other words, it modifies the Lagrangian by a 
total derivative which does not affect the classical equations of motion, but may give 
rise to quantum mechanical effects. The situation is similar to the appearance of the 
quantum mechanical symmetry-breaking phenomena in field theories [ 5 ] .  To see this 
analogy we can recall the derivation of the chiral anomaly from the non-invariance of 
the path integral measure for gauge theories with fermions under the chiral transforma- 
tions [ 6 ] .  

Finally we emphasise that if the endpoint Jacobian is constant, the effective action 
coincides with the classical one. That is why we do not have any ordering problem 
when we map the H atom path integral to the four-dimensional harmonic-oscillator 
Green function [7]. 



3392 I H Duru and N Una1 

References 

[ l ]  Edwards S F and Gulyaev Y V 1964 Proc. R. Soc. A 279 229 
[2] Langguth W and Inomata A 1977 J.  Math. Phys. 20 499 
[3] Duru I H 1983 Phys. Rev. D 28 2689 
[4] Duru I H 1986 Phys. Lett. 119A 163 
[5] Jackiw R 1985 Anomalies and topology. Preprinf Massachusetts Institute of Technology CTP-1298 
[ 6 ]  Fujikawa K 1979 Phys. Rev. Leu. 42 1195 
[?I Dum I H and Kleinert H 1979 Phys. Lett. 848, 185; 1982 Fortschr. Phys. U) 401 


